Emergente
Ganzzahligkeit Auszug aus Spektrum der Wissenschaft 02/14

Folgender Ausschnitt aus dem Artikel „Machen Quanten Sprünge?“ verdeutlich sehr anschaulich die kontinuierliche Natur des Universums.

In vieler Hinsicht sind diskrete Zahlen in der Physik eine hervortretende Eigenschaft aus Interaktionen fundamentaler kontinuierlicher Felder:

Doch Bohr behielt nicht das letzte Wort. Der österreichische Theoretiker Erwin Schrödinger (1887-1961) entwickelte 1925 einen anderen Ansatz, der auf einem Wellenmodell beruht. Die Gleichung, die solche Quantenwellen beschreibt, enthält keine ganzen Zahlen, sondern nur kontinuierliche Größen. Erst wenn man die Schrödinger-Gleichung für ein spezielles System löst, geschieht ein kleines mathematisches Wunder. Im einfachen Fall des Wasserstoffatoms umkreist ein Elektron ein Proton in ganz speziellen Abständen. Die diskreten Umlaufbahnen definieren die charakteristischen Spektrallinien. Das Atom entspricht einer Orgel, die eine diskrete Tonfolge erzeugt, obwohl die Luft sich kontinuierlich bewegt. Zumindest für das Atom gilt, unter Bezugnahme auf Kroneckers Ausspruch: Gott hat die ganzen Zahlen nicht gemacht. Er schuf kontinuierliche Größen, und der Rest resultiert aus der Schrödinger-Gleichung.

Demnach sind die ganzen Zahlen nicht die Inputs der Theorie, sondern Outputs. Sie stellen ein Beispiel für eine so genannte emergente Größe dar. Somit trifft die Bezeichnung „Quantenmechanik“ eigentlich nicht zu, denn die Theorie ist im Grunde nicht quantenhaft. Erst die durch die Theorie beschriebenen Prozesse formen in Systemen wie dem Wasserstoffatom diskrete Resultate aus einer tiefer liegenden Kontinuität.

Was vielleicht noch überraschender ist: Auch die Existenz von Atomen oder Elementarteilchen ist kein Input unserer Theorien. Physiker lehren gewöhnlich, die Natur sei aus diskreten Teilchen wie Elektronen oder Quarks zusammengesetzt. Das ist falsch. Die Bausteine unserer Theorien sind nicht Teilchen, sondern Felder: kontinuierliche Objekte, die den Raum ähnlich erfüllen wie Gase oder Flüssigkeiten. Bekannte Beispiele sind Elektrik und Magnetismus, doch es gibt auch ein Elektronfeld, ein Quarkfeld, ein Higgsfeld und einige mehr. Was wir fundamentale Teilchen nennen, sind gar keine grundlegenden Objekte, sondern Kräuselungen kontinuierlicher Felder.

Ein Skeptiker könnte einwenden, dass die physikalischen Gesetze doch einige ganze Zahlen enthalten. Zum Beispiel beschreiben die Gesetze drei Arten von Neutrinos, sechs Arten von Quarks – von denen jede in drei so genannten Farben vorkommt – und so fort. Überall ganze Zahlen! Aber stimmt das? All diese Beispiele geben die Anzahl der Teilchentypen im Standardmodell an, und diese Größe ist mathematisch ungeheuer schwer zu präzisieren, wenn Partikel miteinander wechselwirken. Teilchen können sich verwandeln: Ein Neutron zerfällt in ein Proton, ein Elektron und ein Neutrino. Sollen wir es als ein, drei oder gar vier Teilchen zählen? Die Behauptung, es gebe drei Arten von Neutrinos, sechserlei Quarks und so weiter, ignoriert die Wechselwirkungen.

Falls Interesse bestehet kann man den gesamten und ausführlichen Artikel „Machen Quanten Sprünge?“ auf den Seiten von Spektrum der Wissenschaft lesen.

David Tong (physicist)

David Tong is a professor of theoretical physics at DAMTP in Cambridge, a fellow of Trinity College, Cambridge, and joint recipient of the 2008 Adams Prize.
Definition from Wikipedia – David Tong (physicist)